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THE VISCOSITIES OF UNBLEACHED ALKALINE PULPS
IV. THE EFFECT OF ALKALI

B.I. Fleming and G.J. Kubes
Pulp and Paper Research Institute of Canada
570 St. John's Boulevard
Pointe Claire, P.Q., Canada HI9R 3J9

ABSTRACT

An equation has been developed to relate the viscosity of
unbleached pulp to the residual alkali in the spent liquor, and
the time-temperature profile of the cook (expressed as the
G-factor). The equation is applicable to kraft, kraft-AQ and
soda-AQ pulping and to a variety of wood species.

INTRODUCTION

When wood pulp was cooked with a large excess of effective
alkali (so that the alkali concentration did not change appreci-
ably during cooking), the rate of viscosity loss was found to be
first order with respect to hydroxide ion concentration [1].
Theoretical considerations to support the experimental observa-

tions led to equations 1 and 2, where [n], and [n]. are the

t

1 1
-[TTT:-TTT]:‘IO kvis(t)'dt (1)
kvis = 0.75 k' [OH™] (2)
217
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intrinsic viscosities of the pulp before cooking, and after cook-
ing for time t; kvis is the rate constant for viscosity loss at
constant hydroxide ion concentration; and k' is the bimolecular
rate constant for chain cleavage., By substituting for kvis in
equation 1, we obtain equation 3 which describes the effect of
alkali on pulp viscosity, [nl.. For certain special experi-
mental cooks in which the alkali charge is set high enough so
that the alkali concentration remains constant during pulping,

equation 3 can be simplified to equatiom 4.

t
1 1 -
T T 0.75 [  k'(t) « [OHT](t)+dt (3)
n t " o 0
TI'T' -Tl—]—-= 0.75 [on=] | "t (e)ede %)
n t n o] o

In these equations, k'(t) indicates that the rate constant
k' (which is temperature dependent) is varying as a function of

time as the digester temperature changes. The value of the
t

integral | k'(t)edt is proportional to the "G-factor", which
o

can be calculated as described earlier [1]. Thus, equation 4

predicts that a plot of 1/[n] vs. G x [OH™] will be linear, pro-

vided that [OH™] does not vary during the cook.

RESULTS AND DISCUSSION

Constant Hydroxide Ion Concentration

An attempt was made to confirm the prediction of Equation 4
by using data taken from illustrations in an article by Basta and
Samuelson [2]. They used a liquor-to-wood ratio of 130:1 to cook
spruce woodmeal, and as a result, the alkali concentration was

almost unchanged after the cook. When the product of the
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G-factor and the initial hydroxide concentration was plotted
against the reciprocal viscosity of the pulp, a straight line
graph was obtained (R2 = 0.95). This result, illustrated in
Figure 1, supports the validity of Equation 4. The intercept on
the ordinate (0.74 x 10~3) corresponds to an intrinsic viscosity
of 1350 dmd /kg which in turn corresponds to aTﬁw of 2140 [3a].
This value corresponds to the viscosity of the cellulose in
uncooked spruce woodmeal. It is within the range quoted for
nitrated wood cellulose [3b], although much lower than values

obtained by Timell et al. [4,5].

Basta and Samuelson have used "intrinsic viscosity" values
which are symbolized by "[n]", and are measured by SCAN C-15:62.
Because a linear relationship exists [l] between [n]-! and n-!
(where n refers to the TAPPI T-230 cuene viscosity), Equation 4

will apply to both kinds of viscosity measurement.

Decreasing Hydroxide Ion Concentration

The data plotted in Figure 1 show that viscosity prediction
using the G-factor is possible provided that the alkali con-
centration is well defined. In industrial alkaline pulping,

however, the hydroxide ion concentration varies as a function of
t

time in a complex way. Since the integral f [oH™].dt for an
o

industrial cook seems to be inaccessible, the problem is to find

some alkali term which will give a linear correlation with the

integral.

In an attempt to find such a term we have examined the com-
monly measured parameters: initial effective alkali (EA{), and
residual effective alkali in the liquor at the end of the cook
(EAr). The residual alkali term seemed from the outset to be

more promising: Basta and Samuelson provided residual alkali
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FIGURE 1. Soda pulping of spruce woodmeal at a liquor-to-wood
ratio of 130:1. Data from Ref. 2 spanning a range of
alkali charges and cooking times produce a straight-
line graph when reciprocal viscosity 1is plotted
against G x 1initial hydroxide coanceantration. O
indicates cooks with an initial alkali concentration
of 7.75 g/L, A indicates 15.5 g/L, [J indicates 31
g/L and O indicates 62 g/L as Na,O.

data which correspond to the initial alkali values used in Figure
1. The residual alkali values differed only slightly from the
initial values, but the fit of the data to a plot of [n]~! versus
EAp+*G was improved (R2 = 0.97).

When our own data for normal kraft cooks done at constant

cooking time were examined by plotting the reciprocal of the
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cuene viscosity against the alkall terms, neither graph was
perfectly straight (Figure 2). However, a straight line does

give a rather close fit to the data over the regiom of industrial

significance (i.e., EAi = 40-65 g/L, EAr = 5~25 g/L). 1t there-

fore seems likely either EA, or EAr would be adequate alkali

i
terms for the purpose of viscosity prediction under well con-

trolled pulping conditions.

Figure 3 shows a plot of {EAj x G] against reciprocal vis-
cosity for cooks done under normal kraft pulping conditiouns.
Some scatter is evident, especially at lower viscosity levels,
but the majority of the points fall close to the line which
curves slightly in the high viscosity region. Both hardwood and
softwood data points seem to fit roughly the same curve. A
straight-line plot was also considered for these data, but when
[EA; x G] is zero, a straight-line plot Indicates a unegative

reciprocal viscosity which has no physical meaning.

Figure 4 shows plots of [EA, x G] versus reciprocal vis-
cosity for the same cooks as those on which Figure 3 is based.
In this case we obtained straight-line plots with different
slopes for hardwoods and softwoods. The relationship illustrated

in Figure 4 1s expressed by equation 5 where the values of C and
Lok [EAG+C (5)
n r

k were 5.6 x 1073 and 2.5 x 10~/ for hardwoods, or 7.2 x 10~3 and
1.6 x 10~7 for softwoods.

The predictive value of equation 5 and of Figure 3 was test-
ed with a number of cooks in which species, alkali charge, cook-
ing process, time and temperature were varied over a wide range.

In Table 1 the predicted viscosity values are compared with the
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FIGURE 2. Constant G-factor pulping: reciprocal viscosity is

plotted against {(A) the initial effective-alkali con-
centration and (B) corresponding residual alkali con-
centrations for normal kraft cooks terminated at a
constant G-factor of 14,060 (equivalent to 1400 H at
170°C).
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FIGURE 3. Pulping at different G-factors with the alkali charge
limited to the industrial range. Reciprocal viscosity
is plotted against EA]; x G, with EA; values of
30-65 g/L (as Na,0) and G values ranging from 13,150
to 25,700; sulfidity, 30%.
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FIGURE 4. Reciprocal viscosity is plotted against EA, x G for

kraft pulping of hardwoods, and softwoods at 30% sul-
fidity. The EA; values and G-factor ranges were the
same as in Figure 3.
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measured cuene viscosities. All the cooks and measurements were
done in duplicate. The viscosity predictions from EA. values
and Equation 5 were more accurate than those made by using EA;
values and the curve shown in Figure 3. This can be clearly seen
for the aspen soda-AQ cook, and for the kraft cooks of black
spruce, and for the hardwood mixture; in the other cases, both
prediction methods came close to the observed values. The last
cook in Table 1 represents an attempt to see how well Equation 5
performs when extended to a region well outside the normal com-

mercial range.

The EAj values used in this work correspond to the alkali
concentration of the added cooking liquor, and a constant dilu-
tion with wood moisture is assumed. It is not surprising that
residual alkali values were found to correlate better with
viscosity because they compensate, at least in part, for exces-
sive wood moisture, rotten wood, and different wood acidities,

all of which decrease the concentration of the cooking alkali.

EXPERIMENTAL

Wood chips (250 g, o.d.) were cooked with 1 litre of liquor
in 2L stainless steel bombs which were rotated in an oil bath,
The constants k and C were evaluated for the H-factor range
1100-2500. The residual alkali concentration was determined by

titrating to a final pH of 10.5 using 1.0 M hydrochloric acid.
The pulp viscosities were measured by TAPPI Standard Method T-230
0s~76 after first delignifying the pulp in the following way:

Unbleached pulp (15 g, o.d.) at 202 consistency was shredded
and mixed with 150 mL of aqueous sodium chlorite (100 g/L). 100
ml of buffer solution (pH 4.0) containing sodium acetate (5 g)
and acetic acid (10 g) was added and the pulp mass was well mixed

once again. The pulp was allowed to react in a sealed coatainer
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for 18 h at troom temperature and the delignified pulp was then

diluted and washed.

CONCLUSIONS

Our earlier work showed that cooks done at different temper-
atures but at a coastant G-value would produce pulps of similar
viscosity. Thus the G-factor can be used like the H-factor; for
a particular wood furnish, alkali charge, and liquor-to-wood
ratio, there is a correlation between G-factor and viscosity —
just as there is a correlation between H~factor and kappa number.
The work has now been extended so that pulp viscosities can be
calculated with reasonable precision even when the wood furnish
and alkali charge are varied. Although differences in liquor-to-
wood ratio or in methods of residual alkali measurement would
call for some adjustment of the constants k and C, it is antici-
pated that the relationship expressed by Equation 5 will be ap-
plicable to a spectrum of alkaline pulping processes, provided

that no oxidaants are present,
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APPEND X

DATA USED IN FIGURES 2, 3 AND 4

227

TIME AT ¥15COS1TY

COoK SPECIES | TEMP., | TEMP., | G-FACTOR €A EA, EA G o,

NUMBER °c MIN. gA NagO | g/ Nad Pa.s 7l
21802 8irch 170 ] 13,150 60 18.0 236, 700 1641 0.0621
21805 Birch 170 7 13,150 50 12.6 165,690 24.) 0.N415
21808 8irch 110 8 13,150 a0 6.3 82,850 38.1 0.0262
21816 Birch 170 L] 13,150 30 2.3 30,250 66.8 0.0150
22213 Aspen 170 % 13,884 % 3.3 52,410 51.7 0.0193
22218 Aspen ] 90 15,884 40 9.8 139, 780 26.0 0.0385
2217 Aspen 170 90 15,884 50 1.5 182,670 17.1 0.0585
22219 Aspen 17 %0 15,884 50 22.0 349,500 19.5 0.0952
21787 Je Pline 170 84 14,064 60 22.5 316,440 15.1 0.0662
2170 1. Pine 170 84 14,064 50 16.9 237,680 21.3 0.0470
21793 J. Plne 1% 84 14,064 40 9.7 136,420 33.8 0.0296
21796 Ja Pine 170 84 14,064 30 4.2 59,070 49.0 0.0204
2219% . Pine 7 %0 25, 700 45 12.6 323,820 16.5 0.0606
22197 Je Pine 175 90 25, 700 45 12.7 326, 390 16.4 0.0610
21697 B. Spruce 170 84 14,060 60 22.8 320,570 16.1 0.0621
21700 | 8. Sprucs | 170 84 14,060 50 16.6 233,400 22.9 0.0437
21739 8. Spruce 170 84 14,060 40 10.5 147,760 35.4 0.0282
21742 8. Spruce 1% 84 14,060 30 4.3 60, 460 47.0 0.0213
21581 | 8. Spruce | 7 84 14,060 60 23.1 324, 790 163 0.0613
21582 | B. Spruce | 17 84 14,060 50 16.6 233,400 23.2 0.0431
21583 8. Spruce 10 B4 14,060 40 10.4 146,220 37.5 0.0266
21584 | B. Spruce | 17 84 14,060 30 4.7 66,080 59.0 3.01 0
22173 | B. Spruce | 170 94 15,400 60 23.4 360, 360 18.2 0.0550
2175 | 8. Spruce | 170 9 15,400 50 17,1 263,340 25.6 0.039}
22185 | 8. spruce | 170 85 14,216 4 9.8 139,320 40.2 0.0249
22187 | 8. Spruce | 1M 85 14,216 30 4.9 63,660 66.9 0.0149
22199 J 8. Spruce 175 105 29,600 45 1.3 334,480 18.1 0.0553




